
15-January-2008 © Copyright Ian D. Romanick 2008

Computer Graphics Programming II

Agenda:
● Remaining GLSL API

• Attributes
• Uniforms

● Uniform matrices
● Texture uniforms

● Render-to-texture
• Copy-to-texture
• Framebuffer objects

● Environment Mapping

15-January-2008 © Copyright Ian D. Romanick 2008

Attributes

Shaders can access built-in attributes
● gl_Color, gl_Normal, gl_Vertex, etc.

Can also create custom named attributes
● Define in shader with attribute key-word

● In application, custom attributes are numbered
• Set with glVertexAttrib[1234][sifd ui us]
• Normalized attributes are set with
glVertexAttrib4N[bsi ub us ui]v

● Normalized values, like colors, have range [0.0, 1.0]

• Associate name from shader with number in application
with glBindAttribLocation.

15-January-2008 © Copyright Ian D. Romanick 2008

Uniforms

Shaders can access built-in uniforms
● gl_ModelViewMatrix, gl_LightSource, etc.

Can also create custom named uniforms
● Define in shader with uniform key-word

● In application, uniforms are numbered
• Get number with glGetUniformLocation

GLint glGetUniformLocation(GLuint handle,
const GLchar *name);

15-January-2008 © Copyright Ian D. Romanick 2008

Setting Uniforms

Must bind program (with glUseProgram) to
set its uniforms

Set with glUniform[1234][if]{v}
void glUniform4fv(GLint uniform, GLsizei count,

const GLfloat *data);

● Uniforms can be arrays, and count is the number
of elements

Use glMatrixUniform[234]fv for matrix
uniforms

void glMatrixUniform4fv(GLint uniform,
GLsizei count, GLboolean transpose,
const GLfloat *data);

15-January-2008 © Copyright Ian D. Romanick 2008

Texture Uniforms

Textures accessed through sampler uniforms

Different sampler type for each target:
● sampler1D, sampler2D, sampler3D
● samplerCube, samplerRect
● sampler1DShadow, sampler2DShadow

• We'll use these next term.

uniform sampler2D normal_map;

Set uniform to texture unit number
● Set just like any other integer uniform

15-January-2008 © Copyright Ian D. Romanick 2008

Texture Fetch Functions

Sample texture using texture function
● One function for each texture target

● Each function takes a sampler uniform and a
texture coordinate as parameters

tex_color = texture2D(tex_sampler,
 gl_TexCoord[0]);

● Separate versions also available for projective
texturing

tex_color = texture2DProj(tex_sampler,
 gl_TexCoord[0]);
• Do not divide by texture coordinate's w by hand!!!

15-January-2008 © Copyright Ian D. Romanick 2008

Render-to-texture

Several methods exist in OpenGL to render to a
texture.
● Render to the framebuffer, then copy the results to

a texture.

● Use the new framebuffer objects extension.

● Render to a pixel buffer (pbuffer), then bind the
pbuffer to a texture.
• This method is platform dependent (i.e., is different on

Linux, Windows, and Mac OS) and will not be covered in
this course.

15-January-2008 © Copyright Ian D. Romanick 2008

Why render to a texture?

Many, many effects can be created by
rendering to one or more textures, then using
those textures to render the final scene.

15-January-2008 © Copyright Ian D. Romanick 2008

Copy to texture

Easiest and least efficient form of render-to-
texture.

Draw to the backbuffer, copy resulting image to
texture with either glCopyTexImage2D or
glCopyTexSubImage2D.

That's it.

15-January-2008 © Copyright Ian D. Romanick 2008

Problems with copy-to-texture

Must perform extra copies.

Must perform extra buffer clears.

 If the window is obscured or off the screen, the
texture may be corrupted.

The window must be at least as large as the
desired texture.

15-January-2008 © Copyright Ian D. Romanick 2008

Framebuffer Objects

The framebuffer object (FBO) interface has a
fairly steep learning curve.
● We're just going to scratch the surface today, and

we'll continue next week.

● The ARB spent two years developing this interface.

● It builds on the familiar texture interfaces, but is still
very different.

Now that I've stricken terror into your hearts...

15-January-2008 © Copyright Ian D. Romanick 2008

Creating an FBO

The first step is to create the FBO.
● Use glGenFramebuffersEXT and
glBindFramebufferEXT.

Attach one or more renderable objects to it.
● There are several functions available to do this.

More on this later.

● Conceptually, this is similar to attaching shader
objects to a program object.

● Example: Attach an RGBA texture to the FBO.

15-January-2008 © Copyright Ian D. Romanick 2008

Using an FBO

Once the FBO has all of its attachments:
● Make sure the FBO is acceptable to the driver /

hardware with glCheckFramebufferStatusEXT.
• Some hardware can't handle some combinations of

attachments.
• Some combinations of attachments are just plain wrong

(i.e., attaching a depth texture to a color attachment).

● Bind the framebuffer with
glBindFramebufferEXT.

● Reset viewport and draw!

15-January-2008 © Copyright Ian D. Romanick 2008

Using an FBO (cont.)

When done rendering to FBO, bind the 0 object
to resume rendering to window.

To use textures that were rendered to, simply
bind and use as usual.
● You cannot use GL_GENERATE_MIPMAPS with

FBO-rendered textures.

● Instead, use new function glGenerateMipmapEXT
to generate the mipmap stack on-demand.

15-January-2008 © Copyright Ian D. Romanick 2008

Renderbuffers and textures

Two broad types of objects can be attached to
an FBO.
● A texture. Most textures are both texturable and

renderable.

● A renderbuffer. Renderbuffers are only renderable.
• If you won't need to texture from it, prefer to use a

renderbuffer.

15-January-2008 © Copyright Ian D. Romanick 2008

Texture attachments

Created as always using glTexImage2D et. al.
● Typically the pixels parameter will be NULL.

Different attachment function depending texture
dimensionality.
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

15-January-2008 © Copyright Ian D. Romanick 2008

Renderbuffers

Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Only way to supply data to a renderbuffer is by
rendering to it.

Attach to FBO using
glFramebufferRenderbufferEXT.

15-January-2008 © Copyright Ian D. Romanick 2008

Dimensions and dimensionality

The dimensions (i.e., height and width) of all
attachments must match.
● This requirement will be relaxed in a future

extension.

The dimensionality (i.e., 1D or 2D) of all
attachments must match.
● A 2D “slice” of a 3D texture is attached, so it is

treated as a 2D texture for this purpose.

15-January-2008 © Copyright Ian D. Romanick 2008

Break

15-January-2008 © Copyright Ian D. Romanick 2008

Environment Mapping

Two common types of environment mapping:
● Sphere environment mapping – Specially encode

the reflection in a 2D texture. Imagine
photographing a reflective sphere placed in a
scene.
• Difficult to generate source texture
• Unequal distribution of texels

● Cubic environment mapping – Each face of the
cube represents one view of the scene.
• Larger data
• Easier to generate source textures

15-January-2008 © Copyright Ian D. Romanick 2008

Sample Sphere Map

15-January-2008 © Copyright Ian D. Romanick 2008

Sample Cube Map

Original image from http://brainwagon.org/?p=72

http://brainwagon.org/?p=72

15-January-2008 © Copyright Ian D. Romanick 2008

Paraboloid

View of environment as reflected by a convex
parabolic mirror
● The outside of a satellite dish, for example

● Reflects 180 of the environment

● Does not have the singularity of a sphere map

15-January-2008 © Copyright Ian D. Romanick 2008

Paraboloid (cont.)

Can easily convert refection vector to 2D
texture coordinate for paraboloid map

● d is the view direction vector
• (0 0 -1) or (0 0 1) depending on direction we're looking

● M
n
 is the transformation matrix for normals

s
t
1
1
=A⋅P⋅S⋅M n

T
⋅RT

A=
1
2

0 0
1
2

0
1
2

0
1
2

0 0 1 0
0 0 0 1

 , P=1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

, S=
−1 0 0 dx
0 −1 0 d y
0 0 1 d z
0 0 0 1

15-January-2008 © Copyright Ian D. Romanick 2008

Sample Parabolic Map

Original image from
http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Cube maps are easy...

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Cube maps are easy...
● Draw six images from center of environment

● Each image uses one cube face as the near plane

But you have to draw SIX TIMES

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Dual-parabolic maps are easy...

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Dual-parabolic maps are easy...
● Draw two images from center of environment

● Transform vertices as usual w/modelview-projection
matrix

● Divide X, Y, Z by W
• Call magnitude of this vector L

● Normalize and divide resulting X and Y by (Z + 1)

● Final Z is L remapped to view volume

● Final W is 1.0.

15-January-2008 © Copyright Ian D. Romanick 2008

References

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html

Jason Zink. “Dual Paraboloid Mapping in the Vertex Shader.” GameDev.net, 1996.
http://www.gamedev.net/reference/articles/article2308.asp

Wolfgang Heidrich and Hans-Peter Seidel. “View-independent environment maps.” In
Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware,
1998. http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html
http://www.gamedev.net/reference/articles/article2308.asp
http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

15-January-2008 © Copyright Ian D. Romanick 2008

Next week...

 Improving the reflection model
● Using environment maps as better lights

● Fresnel reflection

● BRDF introduction

Assignment #1 due

Quiz #1

15-January-2008 © Copyright Ian D. Romanick 2008

Legal Statement

 This work represents the view of the authors and does not
necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

