
15-January-2008 © Copyright Ian D. Romanick 2008

Computer Graphics Programming II

Agenda:
● Remaining GLSL API

• Attributes
• Uniforms

● Uniform matrices
● Texture uniforms

● Render-to-texture
• Copy-to-texture
• Framebuffer objects

● Environment Mapping

15-January-2008 © Copyright Ian D. Romanick 2008

Attributes

Shaders can access built-in attributes
● gl_Color, gl_Normal, gl_Vertex, etc.

Can also create custom named attributes
● Define in shader with attribute key-word

● In application, custom attributes are numbered
• Set with glVertexAttrib[1234][sifd ui us]
• Normalized attributes are set with
glVertexAttrib4N[bsi ub us ui]v

● Normalized values, like colors, have range [0.0, 1.0]

• Associate name from shader with number in application
with glBindAttribLocation.

15-January-2008 © Copyright Ian D. Romanick 2008

Uniforms

Shaders can access built-in uniforms
● gl_ModelViewMatrix, gl_LightSource, etc.

Can also create custom named uniforms
● Define in shader with uniform key-word

● In application, uniforms are numbered
• Get number with glGetUniformLocation

GLint glGetUniformLocation(GLuint handle,
const GLchar *name);

15-January-2008 © Copyright Ian D. Romanick 2008

Setting Uniforms

Must bind program (with glUseProgram) to
set its uniforms

Set with glUniform[1234][if]{v}
void glUniform4fv(GLint uniform, GLsizei count,

const GLfloat *data);

● Uniforms can be arrays, and count is the number
of elements

Use glMatrixUniform[234]fv for matrix
uniforms

void glMatrixUniform4fv(GLint uniform,
GLsizei count, GLboolean transpose,
const GLfloat *data);

15-January-2008 © Copyright Ian D. Romanick 2008

Texture Uniforms

Textures accessed through sampler uniforms

Different sampler type for each target:
● sampler1D, sampler2D, sampler3D
● samplerCube, samplerRect
● sampler1DShadow, sampler2DShadow

• We'll use these next term.

uniform sampler2D normal_map;

Set uniform to texture unit number
● Set just like any other integer uniform

15-January-2008 © Copyright Ian D. Romanick 2008

Texture Fetch Functions

Sample texture using texture function
● One function for each texture target

● Each function takes a sampler uniform and a
texture coordinate as parameters

tex_color = texture2D(tex_sampler,
 gl_TexCoord[0]);

● Separate versions also available for projective
texturing

tex_color = texture2DProj(tex_sampler,
 gl_TexCoord[0]);
• Do not divide by texture coordinate's w by hand!!!

15-January-2008 © Copyright Ian D. Romanick 2008

Render-to-texture

Several methods exist in OpenGL to render to a
texture.
● Render to the framebuffer, then copy the results to

a texture.

● Use the new framebuffer objects extension.

● Render to a pixel buffer (pbuffer), then bind the
pbuffer to a texture.
• This method is platform dependent (i.e., is different on

Linux, Windows, and Mac OS) and will not be covered in
this course.

15-January-2008 © Copyright Ian D. Romanick 2008

Why render to a texture?

Many, many effects can be created by
rendering to one or more textures, then using
those textures to render the final scene.

15-January-2008 © Copyright Ian D. Romanick 2008

Copy to texture

Easiest and least efficient form of render-to-
texture.

Draw to the backbuffer, copy resulting image to
texture with either glCopyTexImage2D or
glCopyTexSubImage2D.

That's it.

15-January-2008 © Copyright Ian D. Romanick 2008

Problems with copy-to-texture

Must perform extra copies.

Must perform extra buffer clears.

 If the window is obscured or off the screen, the
texture may be corrupted.

The window must be at least as large as the
desired texture.

15-January-2008 © Copyright Ian D. Romanick 2008

Framebuffer Objects

The framebuffer object (FBO) interface has a
fairly steep learning curve.
● We're just going to scratch the surface today, and

we'll continue next week.

● The ARB spent two years developing this interface.

● It builds on the familiar texture interfaces, but is still
very different.

Now that I've stricken terror into your hearts...

15-January-2008 © Copyright Ian D. Romanick 2008

Creating an FBO

The first step is to create the FBO.
● Use glGenFramebuffersEXT and
glBindFramebufferEXT.

Attach one or more renderable objects to it.
● There are several functions available to do this.

More on this later.

● Conceptually, this is similar to attaching shader
objects to a program object.

● Example: Attach an RGBA texture to the FBO.

15-January-2008 © Copyright Ian D. Romanick 2008

Using an FBO

Once the FBO has all of its attachments:
● Make sure the FBO is acceptable to the driver /

hardware with glCheckFramebufferStatusEXT.
• Some hardware can't handle some combinations of

attachments.
• Some combinations of attachments are just plain wrong

(i.e., attaching a depth texture to a color attachment).

● Bind the framebuffer with
glBindFramebufferEXT.

● Reset viewport and draw!

15-January-2008 © Copyright Ian D. Romanick 2008

Using an FBO (cont.)

When done rendering to FBO, bind the 0 object
to resume rendering to window.

To use textures that were rendered to, simply
bind and use as usual.
● You cannot use GL_GENERATE_MIPMAPS with

FBO-rendered textures.

● Instead, use new function glGenerateMipmapEXT
to generate the mipmap stack on-demand.

15-January-2008 © Copyright Ian D. Romanick 2008

Renderbuffers and textures

Two broad types of objects can be attached to
an FBO.
● A texture. Most textures are both texturable and

renderable.

● A renderbuffer. Renderbuffers are only renderable.
• If you won't need to texture from it, prefer to use a

renderbuffer.

15-January-2008 © Copyright Ian D. Romanick 2008

Texture attachments

Created as always using glTexImage2D et. al.
● Typically the pixels parameter will be NULL.

Different attachment function depending texture
dimensionality.
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

15-January-2008 © Copyright Ian D. Romanick 2008

Renderbuffers

Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Only way to supply data to a renderbuffer is by
rendering to it.

Attach to FBO using
glFramebufferRenderbufferEXT.

15-January-2008 © Copyright Ian D. Romanick 2008

Dimensions and dimensionality

The dimensions (i.e., height and width) of all
attachments must match.
● This requirement will be relaxed in a future

extension.

The dimensionality (i.e., 1D or 2D) of all
attachments must match.
● A 2D “slice” of a 3D texture is attached, so it is

treated as a 2D texture for this purpose.

15-January-2008 © Copyright Ian D. Romanick 2008

Break

15-January-2008 © Copyright Ian D. Romanick 2008

Environment Mapping

Two common types of environment mapping:
● Sphere environment mapping – Specially encode

the reflection in a 2D texture. Imagine
photographing a reflective sphere placed in a
scene.
• Difficult to generate source texture
• Unequal distribution of texels

● Cubic environment mapping – Each face of the
cube represents one view of the scene.
• Larger data
• Easier to generate source textures

15-January-2008 © Copyright Ian D. Romanick 2008

Sample Sphere Map

15-January-2008 © Copyright Ian D. Romanick 2008

Sample Cube Map

Original image from http://brainwagon.org/?p=72

http://brainwagon.org/?p=72

15-January-2008 © Copyright Ian D. Romanick 2008

Paraboloid

View of environment as reflected by a convex
parabolic mirror
● The outside of a satellite dish, for example

● Reflects 180 of the environment

● Does not have the singularity of a sphere map

15-January-2008 © Copyright Ian D. Romanick 2008

Paraboloid (cont.)

Can easily convert refection vector to 2D
texture coordinate for paraboloid map

● d is the view direction vector
• (0 0 -1) or (0 0 1) depending on direction we're looking

● M
n
 is the transformation matrix for normals


s
t
1
1
=A⋅P⋅S⋅M n

T
⋅RT

A=
1
2

0 0
1
2

0
1
2

0
1
2

0 0 1 0
0 0 0 1

 , P=1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

, S=
−1 0 0 dx
0 −1 0 d y
0 0 1 d z
0 0 0 1



15-January-2008 © Copyright Ian D. Romanick 2008

Sample Parabolic Map

Original image from
http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node185.html

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Cube maps are easy...

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Cube maps are easy...
● Draw six images from center of environment

● Each image uses one cube face as the near plane

But you have to draw SIX TIMES

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Dual-parabolic maps are easy...

15-January-2008 © Copyright Ian D. Romanick 2008

Real-time Generation

Dual-parabolic maps are easy...
● Draw two images from center of environment

● Transform vertices as usual w/modelview-projection
matrix

● Divide X, Y, Z by W
• Call magnitude of this vector L

● Normalize and divide resulting X and Y by (Z + 1)

● Final Z is L remapped to view volume

● Final W is 1.0.

15-January-2008 © Copyright Ian D. Romanick 2008

References

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html

Jason Zink. “Dual Paraboloid Mapping in the Vertex Shader.” GameDev.net, 1996.
http://www.gamedev.net/reference/articles/article2308.asp

Wolfgang Heidrich and Hans-Peter Seidel. “View-independent environment maps.” In
Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware,
1998. http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

http://opengl.org/resources/code/samples/sig99/advanced99/notes/node184.html
http://www.gamedev.net/reference/articles/article2308.asp
http://www.cs.ubc.ca/~heidrich/Papers/GH.98.pdf

15-January-2008 © Copyright Ian D. Romanick 2008

Next week...

 Improving the reflection model
● Using environment maps as better lights

● Fresnel reflection

● BRDF introduction

Assignment #1 due

Quiz #1

15-January-2008 © Copyright Ian D. Romanick 2008

Legal Statement

 This work represents the view of the authors and does not
necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

